

CENTER FOR INTELLIGENT SYSTEMS, CONTROL, AND ROBOTICS

Team 10 **GOLIATH Autonomous ATV**

Group Members:

Michael Brazeau Omesh Dalchand Lester Kendrick

Marc Akbar

Jeremy Hammond Merrick Salisbury

Advisors:

Dr. Chiang Shih

Dr. Kamal Amin Dr. Michael Frank Dr. Oscar Chuy Dr. Emmanuel Collins

> Instructor: Dr. Kamal Amin

Background/Needs

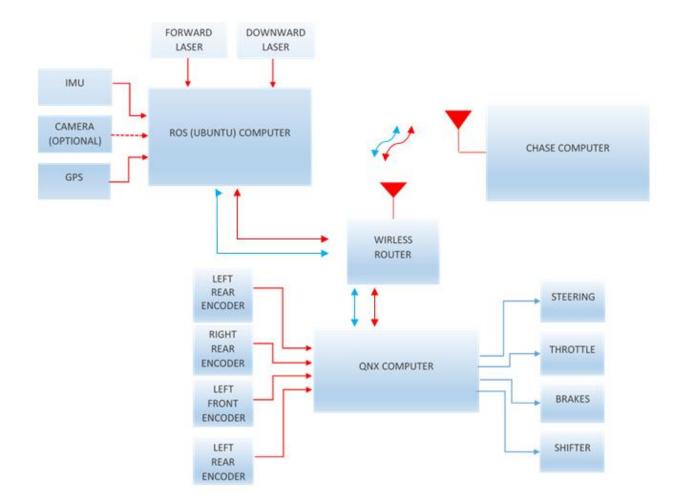
- CISCOR focuses on mobile robotic path-planning
- Requires a more robust autonomous off-road platform
- Previous work included remote control
- Actuators installed

Objectives

- To integrate a sensory system that will scan the surrounding environment
- Use data to compute a trajectory to perform waypoint navigation and road following autonomously
- Will be used as a future research platform for CISCOR

Constraints

- Sensors/ATV
 - Team must work with previously purchased sensors and ATV
- Budget
 - 1500.00 USD
- Time
 - 32 weeks for project completion

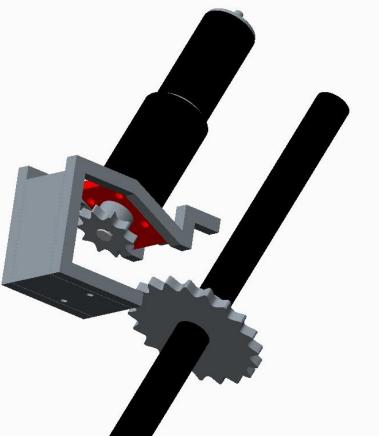


Sensor Overview

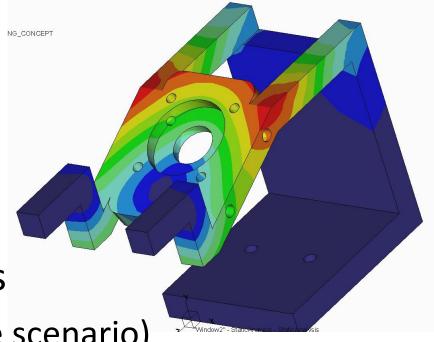
System Block Diagram

Computer/Router

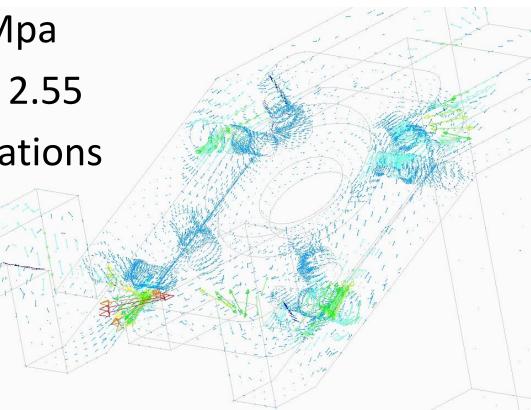
- ROS/Ubuntu Toughbook laptop
 Lasers, IMU, GPS
- QNX Toughbook laptop
 Encoders, actuators
- Chase Toughbook laptop
 - System monitoring
- Router TP- Link
 - 30 mile range


Steering Motor

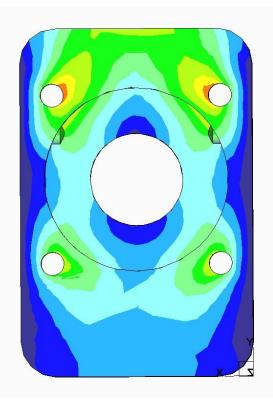
Steering Motor

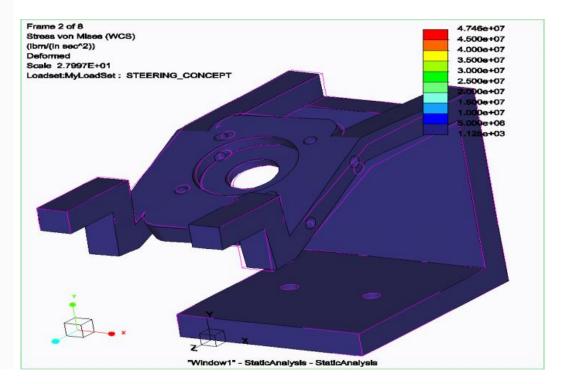

- 24V DC brushed Maxon motor
- 8.92 Nm stall torque
- 100:1 Gearbox

Steering Motor Mount


- No decision needed
- Modify existing mount
- 6061 Aluminum
 - Water Jet, CNC
- Finite Element Analysis
 - Stall torque (worst case scenario)
 - 892 Nm

Steering Motor Mount


- 6061 AL yield strength 240 Mpa
- Max stress 95 Mpa
- Factor of safety 2.55
- Stress concentrations at bolt holes

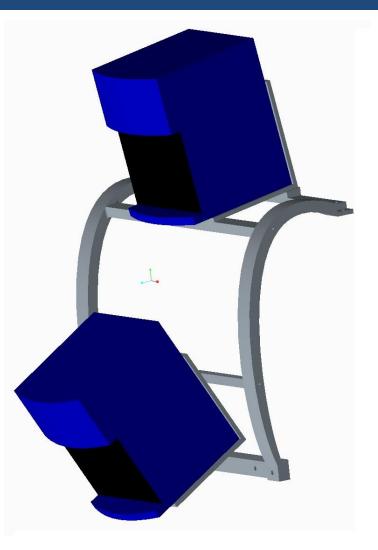


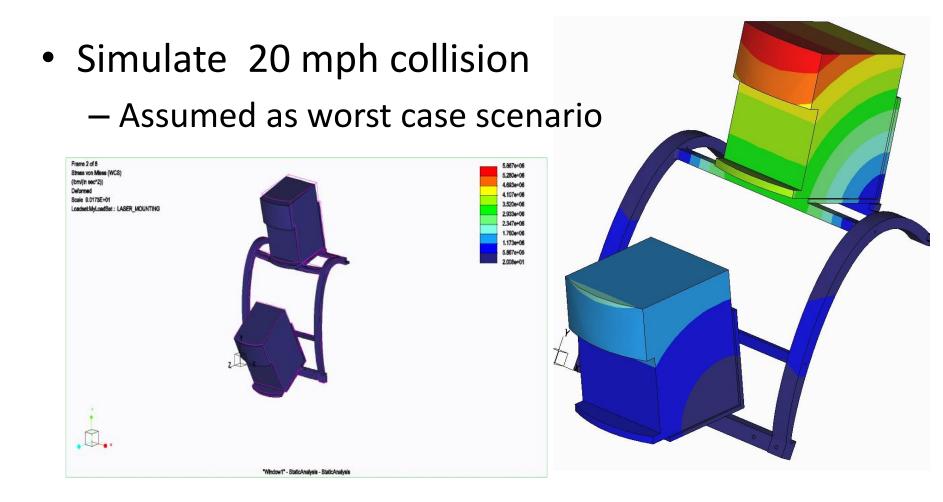
Steering Motor Mount

• Mount displacement

Laser

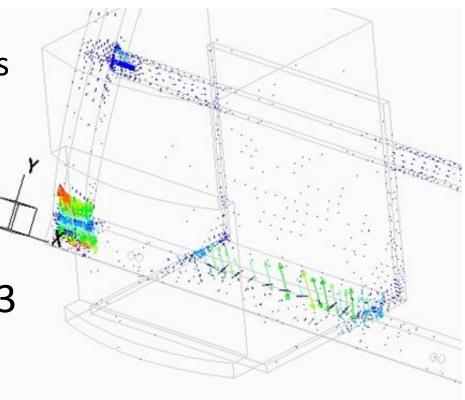
Laser


- SICK LMS-200 Laser Measurement System
- 180 degree scan profile
- Angular resolution
 = 0.25°
- Two lasers
- 24V DC / 2.5A
- RS-232 to USB converter


Laser Mount

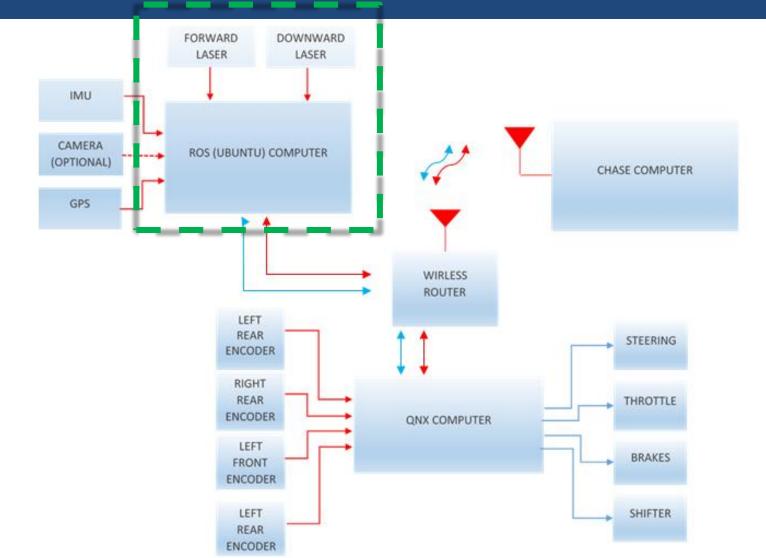
- Stacked configuration
- Low interference
- Functionality
- Ease of calculation
- 6061 Aluminum
 - Water Jet, drill press

Laser Mount



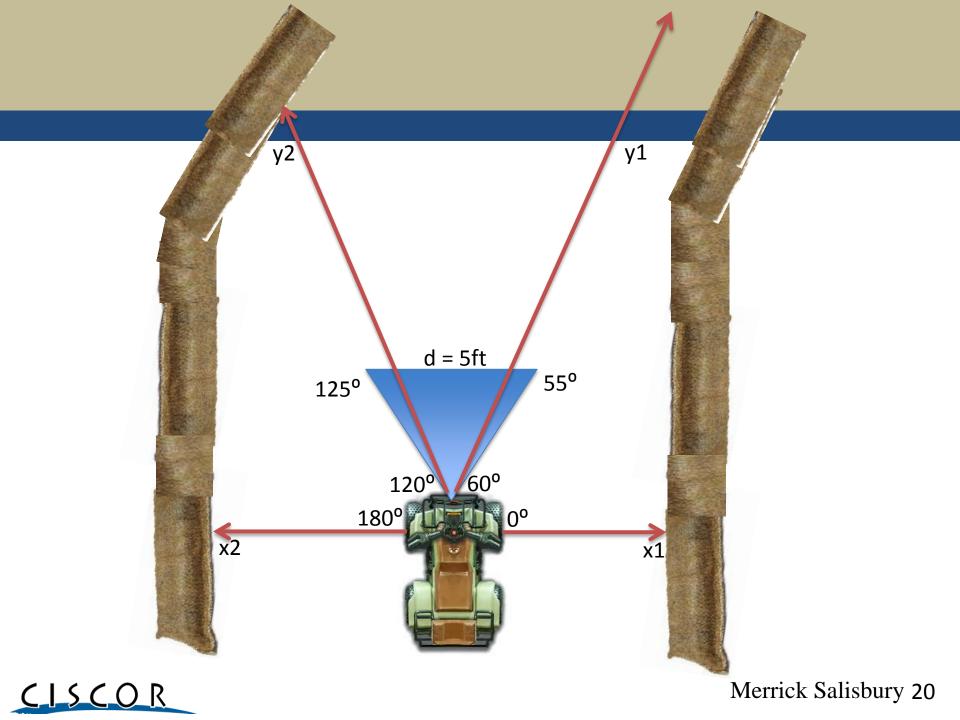
Laser Mount

- 6061 AL yield strength 240 Mpa
- Max stress 105 Mpa
 - Stress concentrations


located at joints

• Factor of safety 2.303

Road Following

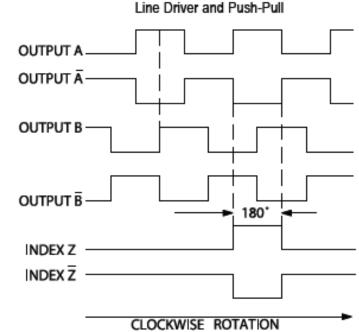

CISCOR

Merrick Salisbury 18

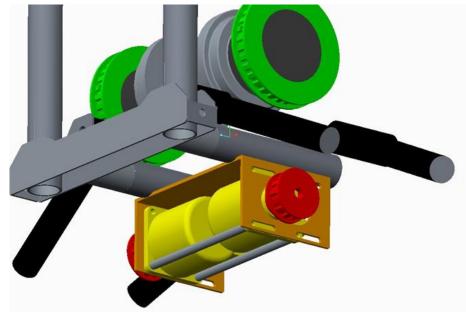
Road Following Pseudo Code

```
function firstsensor(s,d){
                                                                                function secondsensor(s,d){
       int x1,x2,d,s,b
                                                                                            int y1,y2
       IF (b<4.5feet) THEN
                                                                                            IF (y1=y2) THEN
                  Full brake to stop immediately
                                                                                                       s = s
                         Spin
                                                                                            ELSE
       ELSE
                                                                                                       IF s < 3 THEN
                  Do nothing
                                                                                                                   s = s
       END IF
                                                                                                       ELSE
       IF (x1=x2) THEN
                                                                                                                   s = s - 1
                  IF (s>5) THEN
                                                                                                       END IF
                             s = s
                                                                                            END IF
                  ELSE
                                                                                }
                             s = s + 1 //increment speed
                  END IF
       ELSE IF (x1<x2) THEN
                                                                                main(){
                             //turn left
                  d = -2
                                                                                            function firstsensor(s,d);
       ELSE IF (x1>x2) THEN
                                                                                           function secondsensor(s,d);
                  d = 2
                             //turn right
                                                                                }
       ELSE IF (x1<<x2) THEN
                  d = -4
                  IF (s>1) THEN
                             s = s - 1
                  ELSE
                                                                       Speed = s; Direction = d; Brake = stop flag; Shifter = forward;
                             s=s
                                                                       //First sensors scans 3-5feet in front of the ATV
                  END IF
                                                                       //Second sensors scans 15-20ft in front of the ATV
       ELSE IF (x1>>x2) THEN
                                                                       //x1 is the distance from road edge at 0 degrees(right side)
                  d = 4
                                                                       //x2 is the distance from road edge at 180 degrees (left side)
                  IF (s>1) THEN
                             s = s - 1
                                                                       //d is the distance from an obstacle immediately in front of atv (ranged 55-125 degrees)
                  ELSE
                                                                       //y1 is the distance from the road at 60 degrees (right side)
                             s=s
                                                                       //y2 is the distance from the road at 120 degrees (left side)
                  END IF
       ELSE
       END IF
```

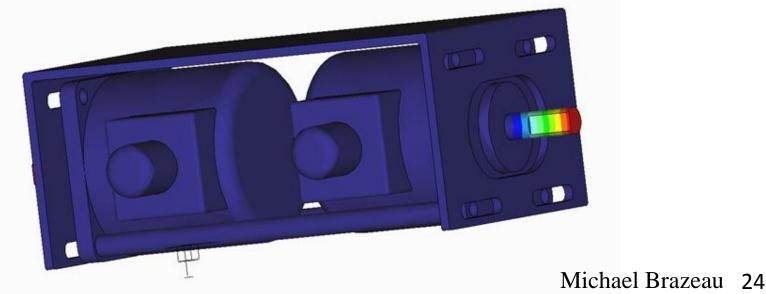
Merrick Salisbury 19



Encoder


- Accu-Coder 725 Encoder
- 30,000 counts per revolution
- Quadrature encoding
- 5-28 V DC

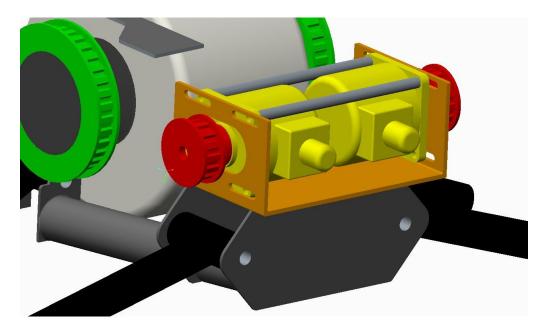
- Small interference
- Functionality
- Belt tensioner added
- 6061 Aluminum
 - Water Jet



Possible impact from ground
 – Skid plate

Michael Brazeau 23

- Applied 80 lbf to encoder shafts
 - Maximum allowable load rating
 - Shafts made from 303 stainless steel
 - Support structure made from low carbon steel


- Max radial load 80 lbf
- Stainless steel yield strength 200 Mpa
- Max stress 80 Mpa
 - Located at base of encoder shafts
- Factor of safety 2.49

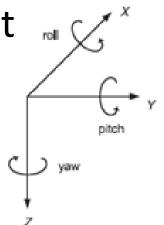
Rear Encoder

Rear Encoder Mount

- Same design as front encoder mount
 Ease of manufacture
- Analysis already done

Michael Brazeau 27

IMU



Michael Brazeau 28

IMU

- Crossbow Inertial Measurement Unit
- Connections:
 RS 232 (GPS)
- Power Requirements
 - +9V to +30V
 - < 250 mA (< 3W @ 12V)

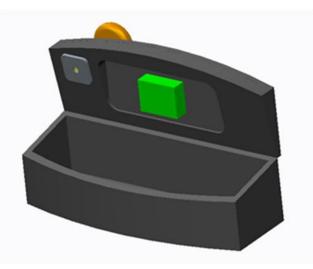
IMU Mounting

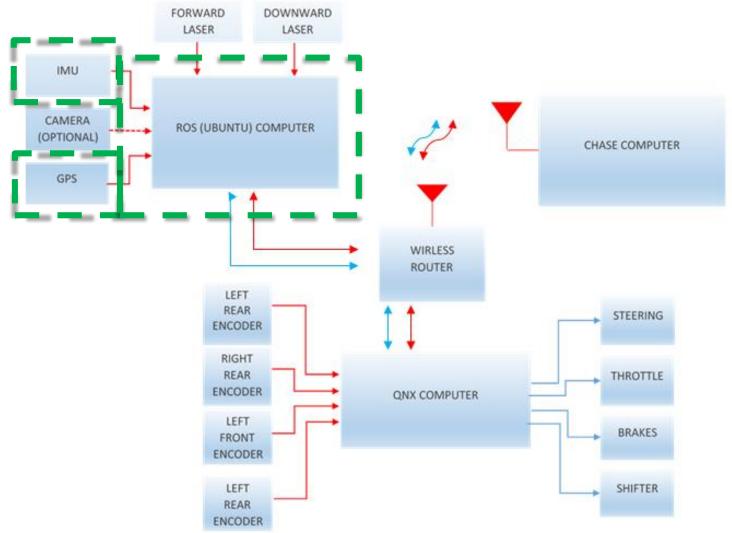
- Low susceptibility to damage
- No stress analysis
- Minimal manufacturing
 Mounting holes

GPS

Michael Brazeau 31

GPS


- Pro-Pack G2 plus GPS
- Connections:
 - RS 232 to USB Converter (CPU)
 - RS 232 (IMU)
 - Antenna Cable (GPS Antenna)
- Power Requirements:
 - +9V to +18V DC
 - 2.5W Power


GPS Mounting

- Small Interference with parts
- Low Susceptibility to Damage
- No stress analysis
- Antenna stabilizing plate
 - 6061 Aluminum
 - Water Jet

CISCOR

Lester Kendrick 34

• Basic Path Finding Algorithm

- Demonstration of system functionality

Basic Path Finding Algorithm:

Given a destination (x2,y2)

Record current position (x1,y1)

If $x^2 > x^1$

Orient in Eastern direction

Else if x1>x2

Orient in Western direction

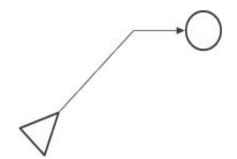
While (current position != destination)

If x1 < x2

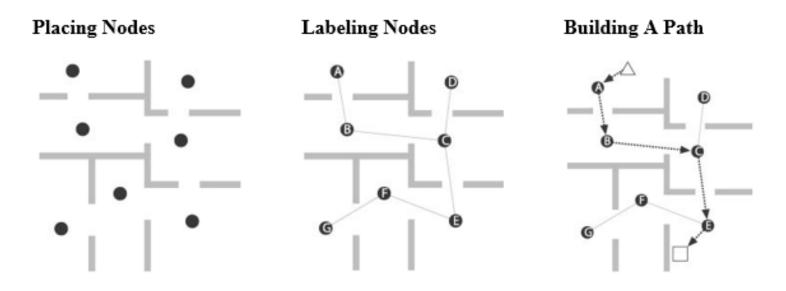
 $x1 \leftarrow x1^{++}$; using the encoders to determine the necessary trajectory to

else if x1 > x2

x1 ← x1 - -

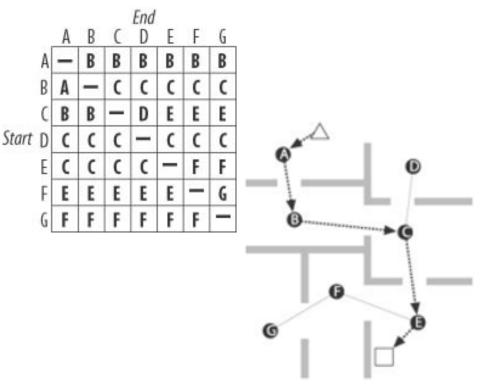

If y1 < y2

y1**←** y1++


else if y1 > y2

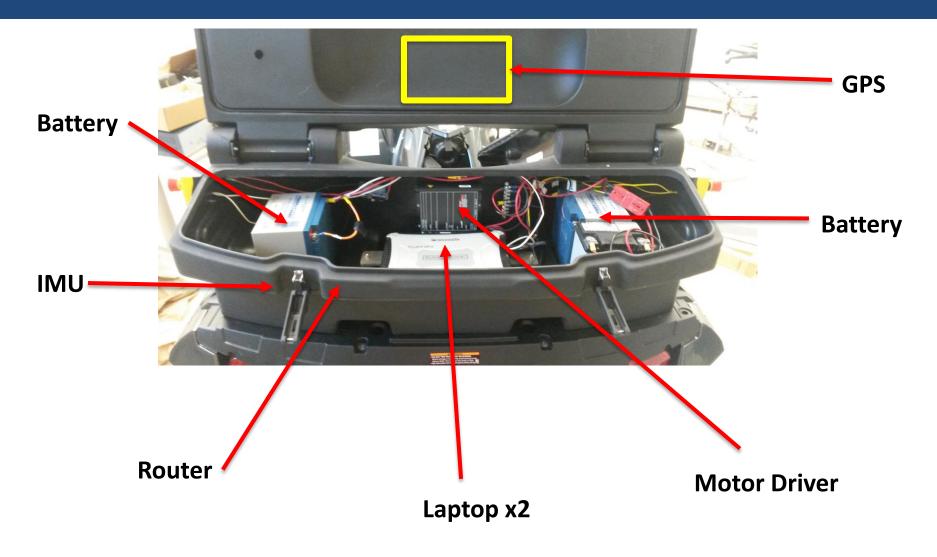
y1 ← y1 - -

- Navigation using multiple waypoints(or nodes)
 - Extension of Basic Path Finding Algorithm
 - Uses node table to determine best path of navigation



Lester Kendrick 36

Functionality


- User places nodes on a map of the testing terrain
- Nodes will be labeled in order of nodes that are most accessible
- Node table is used to determine best path to destination

Node Table

Trunk Overview

CISCOR

Jeremy Hammond 38

Heat Dissipation

- Refined power dissipation needs ~ 64.4W
- Analysis assumptions (worst case scenario)
 - Outside air temp 90 deg F
 - Isothermal internal surfaces 130 deg F max
 - Prandalt number [Pr], thermal conductivity [k], viscosity
 [u], density[p] of air taken at film temperature
 - Modeled as forced convection over flat plate

Jeremy Hammond 39

Heat Dissipation Solution

- 250 ft^3/min fan X2
 - 64.69 W theoretical heat dissipation
- Functionality
- Low energy consumption
- Snorkels for water/debris protection
 - Baffles
- Laser cut ABS plastic

Sensory Recap

- Road following
 - Lasers, IMU, encoders
- Waypoint navigation
 - Lasers, IMU,

encoders, GPS

 Finalize sensor mount designs

Jeremy Hammond 41

Safety

- Autonomous control can yield unpredictable results
 - Errors in code
 - Wiring issues
 - Sensor malfunctions
- Software safety protocols
 - Release throttle, straighten steering, engage brakes
 - Obstacles
 - Loss of communication between computers or sensors
- Physical safety protocol
 - Spotter with remote power cutoff
 - Loss of communication with remote cutoff button

Parts/Resources

Website	Part	Number	Quantity	Price	Total Price
Mcmaster-Carr	205CFM fan	<u>1939K96</u>	2	73.42	146.84
Mcmaster-Carr	m5 0.8 20mm bolts for enc	91290A242	1	10.99	10.99
Mcmaster-Carr	0.5 in thick 18x18 in 6061 for laser	<u>89155K29</u>	1	152.43	152.43
Mcmaster-Carr	8mm Dia 6061 rod for enc	4634T14	1	4.68	4.68
Mcmaster-Carr	Marine Sealant	67015A51	1	21.55	21.55
Mcmaster-Carr	0.5 in thick 21 in long front belt	6484K147	3	10.33	30.99
Mcmaster-Carr	0.5 in thick 20.2 in long rear belt	1679K267	3	13.44	40.32
Mcmaster-Carr	nuts/bolts/fasteners		1	100	100
Amazon	RS232 to USB converter		4	14.95	59.8
				Total	567.6

- CISCOR workspace, machine shop, and tools
 - Laser cutter
- COE machine shop
 - Water Jet, CNC, end mill, lathe

Summary / Future Plans

- Mechanical designs have been finalized
- Structural and thermal analysis proves functionality of designs
- Remaining budget : 932.40 USD
- Communication with sensors still in progress
- Autonomous algorithms not fully developed
 Pending collaboration with CISCOR researchers

Sources

http://sicktoolbox.sourceforge.net/docs/sick-lms-technicaldescription.pdf

http://www.novatel.com/assets/Documents/Papers/ProPakG2plus.pdf

http://saba.kntu.ac.ir/eecd/ecourses/instrumentation/projects/report s/Poly%20Gyroscope/Producers/Crossbow/IMU/6020-0019-01_B_IMU300CC.pdf

http://www.ctiautomation.net/PDF/Accu-Coder/Accu-Coder-725-Shaft-Encoders.pdf

http://www.maxonmotorusa.com/medias/sys_master/880701476047 8/13_106_EN.pdf

Fin

Questions? Comments?

